

Theoretische Informatik – Übung Gruppe 4

Roman Langrehr

Aufgabe 19

Beweisen Sie die beiden folgenden Aussagen.

- (a) $L_{\rm H}^{\complement}$ ist nicht rekursiv aufzählbar.
- (b) $L'_{\text{diag}} \leq_{\mathbf{R}} L_{\mathbf{H}}$, wobei

$$L'_{\mathrm{diag}} = \{ w \in \{0,1\}^* \mid w = w_{2i} \text{ für ein } i \in \mathbb{N} \text{ und } M_i \text{ akzeptiert } w \text{ nicht } \}.$$

DINFK

Satz von Rice

Definition

Eine Sprache $L \subseteq \operatorname{KodTM}$ heißt semantisch nichttriviales Entscheidungsproblem über Turingmaschinen, falls folgende Bedingungen gelten:

- 1. es gibt eine TM M_1 , so dass $\operatorname{Kod}(M1) \in L$ (daher $L \neq \emptyset$)
- 2. es gibt eine TM M_2 , so dass $Kod(M2) \notin L$ (daher $L \neq KodTM$)
- 3. für zwei Turingmaschinen A und B impliziert L(A) = L(B)

$$\operatorname{Kod}(A) \in L \iff \operatorname{Kod}(B) \in L$$

Satz von Rice

Theorem (Satz von Rice)

Jedes semantisch nichttriviale Entscheidungsproblem über Turingmaschinen ist unentscheidbar.

DINFK Roman Langrehr 2021-11-23

Rekursiv (aufzählbare) Sprachen

Aufgabe

Sind die folgenden Sprachen rekursiv? Beweise deine Antwort.

- $L_1 = \{ \operatorname{Kod}(M) \mid L(M) \text{ ist rekursiv} \}$
- $L_2 = \{ \operatorname{Kod}(M) \mid L(M) \text{ ist rekursiv aufzählbar} \}$
- $L_3 = \begin{cases} \{0\} & \text{falls der Realteil jeder nichttrivialen Nullstelle} \\ & \text{der Riemannschen Zetafunktion } 1/2 \text{ ist} \end{cases}$ $\{1\} & \text{anonsten}$

Rekursive Sprachen

Aufgabe

Wenn L_1 , L_2 rekursive Sprachen sind, welche der folgenden Sprachen sind dann ebenfalls rekursiv?

- L₁^C
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- $L_1 L_2$
- $L_1 \cdot L_2$
- *L*₁*

Rekursive Sprachen

Aufgabe

Wenn L_1 , L_2 rekursive Sprachen sind, welche der folgenden Sprachen sind dann ebenfalls rekursiv?

- L^C₁ Wahr
- $L_1 \cup L_2$ Wahr
- $L_1 \cap L_2$ Wahr
- $L_1 L_2$ Wahr
- $L_1 \cdot L_2$ Wahr
- *L*₁* Wahr

Rekursiv aufzählbare Sprachen

Aufgabe

Wenn L_1, L_2 rekursiv aufzählbare Sprachen sind, welche der folgenden Sprachen sind dann ebenfalls rekursiv aufzählbar?

- L₁^C
- $L_1 \cup L_2$
- $L_1 \cap L_2$
- $L_1 L_2$
- \bullet $L_1 \cdot L_2$
- *L**

Rekursiv aufzählbare Sprachen

Aufgabe

Wenn L_1, L_2 rekursiv aufzählbare Sprachen sind, welche der folgenden Sprachen sind dann ebenfalls rekursiv aufzählbar?

- L_1^{\complement} Falsch
- $L_1 \cup L_2$ Wahr
- $L_1 \cap L_2$ Wahr
- $L_1 L_2$ Falsch
- $L_1 \cdot L_2$ Wahr
- *L*₁* Wahr