

Theoretische Informatik – Übung Gruppe 4

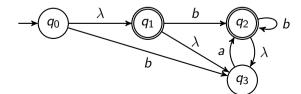
Roman Langrehr

Varianten Nichtdeterministischer endlicher Automaten

 λ -NEAs: NEA bei dem auch Übergänge ohne ein Zeichen zu lesen erlaubt sind $(\delta: Q \times (\Sigma \cup \{\lambda\}) \to \mathcal{P}(Q))$.

Aufgabe

- 1. Gebe ein Verfahren an, mit dem man jeden beliebigen λ -NEA in einen äquivalenten NEA umwandeln kann.
- 2. Wende das Verfahren auf folgenden NEA an:

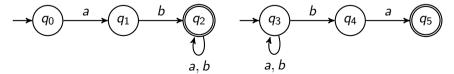


Varianten Nichtdeterministischer endlicher Automaten

NEAs mit mehreren Startzuständen: Akzeptieren ein Wort w wenn ein Startzustand existiert von dem aus der NEA das w akzeptiert.

Aufgabe

- 1. Gebe ein Verfahren an, mit dem man jeden beliebigen NEA mit mehreren Zuständen in einen äquivalenten λ -NEA umwandeln kann.
- 2. Wende das Verfahren auf folgenden NEA mit mehren Startzuständen an:



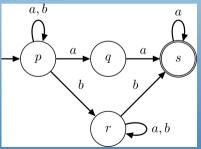
Theorem

Zu jedem NEA M existiert ein EA A, so dass L(M) = L(A).

- A hat Zustandsmenge $\mathcal{P}(Q)$ (Q: Zustandsmenge von M).
- A hat Übergang p x q genau dann wenn $\exists x \in p, \exists y \in q \text{ so dass } M$ einen Übergang x y hat.
- $p \in \mathcal{P}(Q)$ ist akzeptierend, genau dann wenn ein $x \in p$ existiert dass in M akzeptierend ist.

Aufgabe

Wende die Potenzmengenkonstruktion auf folgenden NEA an. Nicht erreichbare Zustände können weggelassen werden.



- Wenn ein NEA M n Zustände hat, hat der per Potenzmengenkonstruktion konstruierte EA 2ⁿ Zustände.
- Manchmal ist das exponentielle Wachstum unvermeidbar (Buch: $L_k := \{x1y \mid x \in \{0,1\}^*, y \in \{0,1\}^{(k-1)}\}, \text{ es gibt NEA mit } k+1 \text{ Zuständen. EA}$ braucht mindestens 2^k).
- Manchmal nicht (z.B. wenn der NEA M bereits deterministisch ist.)

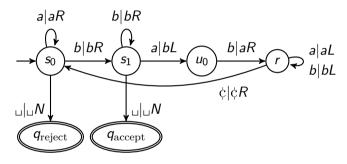
Aufgabe

Wie kann man zu einem NEA M den kleinsten äquivalenten EA A effizient (Laufzeit polynomiell in der Anzahl Zustände von M und A) finden?

- Potenzmengenkonstruktion + Minimieren ist nicht effizient genug
- 1 Mio. \$ Preisgeld für denjenigen der das schafft!
- Die meisten Informatiker vermuten, dass das unmöglich ist.

"TM = Endlicher Automat + (unendliches) Band mit einem Kopf der ein Zeichen lesen/schreiben kann"

- Übergangsfunktion
 - Eingabe: Aktueller Zustand + Aktuelles Bandsymbol
 - Ausgabe: Neuer Zustand + Neues Bandsymbol + Armbewegung (L/N/R)
- Eingabewort: Steht zu Beginn auf dem Band.
- 2 besondere Zustände:
 - Akzeptierender Zustand
 - Verwerfender Zustand
 - In beiden ist keine weitere Aktion mehr möglich.
- Ausgabe: Akzeptierender Zustand, Verwerfender Zustand, Endlosschleife.
 - Bandinhalt kann als zusätzliche Ausgabe interpretiert werden.



Aufgabe

Welche Worte akzeptiert/verwirft diese TM? Was steht nach Eingabe von $w \in \{a, b\}^*$ auf dem Band?

Aufgabe

Entwerfe eine TM, die jede Eingabe $u \in \{0,1\}^+$ akzeptiert und auf ihr Band ein Wort $w \in \{0,1\}^+$ mit Nummer(u) + 1 = Nummer(w) schreibt.

DINFK

- L ist rekursiv aufzählbar: \iff Es gibt eine Turingmaschine die L akzeptiert (d.h. die Turingmaschine hält genau für die Worte $w \in L$ in dem akzeptierenden Zustand.)
- L ist rekursiv oder entscheidbar : \iff Es gibt eine Turingmaschine die L für die Worte $w \in L$ in dem akzeptierenden Zustand hält und für $w \notin L$ in dem verwerfenden Zustand hält.

Theorem

L ist entscheidbar genau dann wenn L und Σ^* – L beide rekursiv aufzählbar sind.

Rekursiv aufzählbare Sprachen

Aufgabe

Eine unendliche Sprache L ist genau dann rekursiv, wenn ein Algorithmus existiert, der alle Wörter in L in kanonischer Reihenfolge auflistet.

Aufgabe

Beweise: Eine unendliche Sprache L ist genau dann rekursiv aufzählbar, wenn ein Algorithmus existiert, der alle Wörter in L auflistet (ohne sich an irgendeine Reihenfolge halten zu müssen).

DINFK