

Theoretische Informatik – Übung Gruppe 3

Roman Langrehr

Aufgabe 30

- a) Sei DREIFACH-SAT die Menge aller KNF-Formeln, die mindestens drei erfüllende Belegungen haben. Zeigen Sie SAT \leq_p DREIFACH-SAT.
- (b) Sei E3SAT die Menge aller KNF-Formeln mit genau drei Literalen paarweise unterschiedlicher Variablen pro Klausel, die eine erfüllende Belegung haben. Zeigen Sie $3SAT \leq_p E3SAT$.

NP-Vollständigkeit

HAMILTON-CYCLE := $\{G \mid G = (V, E) \text{ ist ein ungerichteter Graph mit einem}$ Hamiltonkreis, d.h. einen geschlossenen Pfad der alle Knoten genau 1 Mal besucht. $\}$ $\mathrm{TSP} := \{(G, w, k) \mid G = (V, E) \text{ ist ein vollständiger Graph, } w : E \to \mathbb{N}_0$ Kantengewichte und es gibt einen Hamiltonkreis mit Gesamtgewicht höchstens $k\}$

Aufgabe

Beweise das TSP NP-vollständig ist. Ihr dürft ohne Beweis annehmen, dass HAMILTON-CYCLE NP-schwer ist.

Eine Grammatik ist ein 4-Tupel $G = (\Sigma_N, \Sigma_T, P, S)$ wobei

- Σ_N : Nichtterminalalphabet ("Temporäre Arbeits-Symbole")
 - Konvention: Großbuchstaben
- Σ_T mit $\Sigma_N \cap \Sigma_T$: Terminalalphabet ("Eigentliche Symbole")
 - Konvention: Kleinbuchstaben
- $P \subseteq (\Sigma_N \cup \Sigma_T)^* \Sigma_N (\Sigma_N \cup \Sigma_T)^* \times (\Sigma_N \cup \Sigma_T)^*$: Endliche Menge von Produktionen
 - Übliche Notation: $aXbY \rightarrow cYXa$
- $S \in \Sigma_N$: Startsymbol

Ableitungen: $w \Rightarrow w'$ ($w, w' \in (\Sigma_N \cup \Sigma_T)^*$), bedeutet dass das Anwenden einer Produktionsregel auf ein Teilwort von w das Wort w' ergibt. Die von G erzeugte Sprache ist

$$L(G) = \{ w \in \Sigma_T^* \mid S \Rightarrow^* w \}$$

Definition

Eine Grammatik heißt regulär (oder Typ-3), wenn sie nur Produktionen der Form $X \to w$ oder $X \to wY$ mit $X, Y \in \Sigma_N$ und $w \in \Sigma_T^*$.

Theorem

Die von regulären Grammatiken erkannten Sprachen sind genau die regulären Sprachen.

(Mann kann natürlich auch nicht-reguläre Grammatiken bauen, die trotzdem nur eine reguläre Sprache erkennen.)

BINFK
Roman Langrehr 2020-12

Aufgabe

Gegeben die Grammatik $G = (\{S, B\}, \{a, b\} P, S)$ mit

$$P = \{S o aBa|aSa, \ B o aBa|b\}$$

- a) Ist dies eine reguläre Grammatik?
- b) Gebe eine Ableitung für das Wort aabaa an.
- c) Welche Sprache wird von G erzeugt?
- d) Eine der Produktionen ist überflüssig. Welche?

Aufgabe

Gegeben die Grammatik $G = (\{S, B\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow aBa|aSa, \ B \rightarrow aBa|b\}$$

- a) Ist dies eine reguläre Grammatik? Nein
- b) Gebe eine Ableitung für das Wort aabaa an. $S \Rightarrow aSa \Rightarrow aaBaa \Rightarrow aabaa$
- c) Welche Sprache wird von G erzeugt? $L(G) = \{a^nba^n|n \in \mathbb{N}_+\}$
- d) Eine der Produktionen ist überflüssig. Welche? B o aBa oder S o aSa

Aufgabe

Welche Sprache wird von der Grammatik $G = (\{S, B\}, \{a, b\}, P, S)$ mit

$$P = \{S \to aSa, \\ B \to b\}$$

Aufgabe

Welche Sprache wird von der Grammatik $G = (\{S, B\}, \{a, b\}, P, S)$ mit

$$P = \{S \to aSa, \\ B \to b\}$$

$$L(G) = \emptyset$$

Aufgabe

Welche Sprache wird von der Grammatik $G = (\{S, B, X\}, \{a, b\}, P, S)$ mit

$$P = \{S \to aBa|aSa|X, \\ B \to b, \\ X \to X\}$$

Aufgabe

Welche Sprache wird von der Grammatik $G = (\{S, B, X\}, \{a, b\}, P, S)$ mit

$$P = \{S \rightarrow aBa|aSa|X, \ B \rightarrow b, \ X \rightarrow X\}$$

$$L(G) = \{a^nba^n|n \in \mathbb{N}_+\}$$

Aufgabe

- a) Entwerfe eine reguläre Grammatik für die Sprache
- $L = \{w \in \{a, b\}^* \mid w \text{ enthält } ab \text{ als Teilwort}\}$
- b) Entwerfe eine reguläre Grammatik für die Sprache
- $L = \{w \in \{a, b\}^* \mid w \text{ enthält } ab \text{ nicht als Teilwort}\}$