

Theoretische Informatik – Übung Gruppe 3

Roman Langrehr

Aufgabe 17

Zeige das eine der Sprachen

$$L_1:=\{w\in\{0,1\}^*\mid w=w_{3i+1} \text{ für ein } i\in\mathbb{N}_0 \text{ und } M_i \text{ akzeptiert } w \text{ nicht}\} \text{ oder } L_2:=\{w\in\{0,1\}^*\mid w=w_i \text{ für ein } i\in\mathbb{N}_0 \text{ und } M_{3i+1} \text{ akzeptiert } w \text{ nicht}\}$$

nicht rekursiv aufzählbar ist. Warum geht der Beweis für die andere Sprache nicht analog?

Aufgabe 18

Beschreiben Sie, wie man für jede unendliche Sprache $L \subseteq \{0,1\}^*$ eine nicht rekursiv aufzählbare Teilmenge von L finden kann und begründen Sie ihre Behauptung.

DINFK

Idee:

- Buch: $L_{\text{diag}} := \{ w \in \{0,1\}^* \mid w = w_i \text{ für ein } i \in \mathbb{N}_+ \text{ und } M_i \text{ akzeptiert } w_i \text{ nicht} \}$ ist nicht rekursiv (aufzählbar) (Diagonalisierung).
- Problem: Funktioniert nur für "künstliche" Sprachen.
- Kann $L_{\rm diag} \notin \mathcal{L}_{\rm RE}$ helfen, um für weitere Sprachen zu zeigen, dass diese nicht rekursiv aufzählbar sind?

Definition (Rekursiv Reduzierbar)

Für zwei Sprachen L_1, L_2 sagen wir dass $L_1 \leq_R L_2$ (L_1 ist rekursiv reduzierbar auf L_2) falls

$$L_2\in\mathcal{L}_{\mathrm{R}}\Longrightarrow L_1\in\mathcal{L}_{\mathrm{R}}.$$

Definition (Rekursiv Reduzierbar)

Für zwei Sprachen L_1, L_2 sagen wir dass $L_1 \leq_R L_2$ (L_1 ist rekursiv reduzierbar auf L_2) falls

$$L_2 \in \mathcal{L}_R \Longrightarrow L_1 \in \mathcal{L}_R.$$

Theorem

Wenn L_1 nicht rekursiv ist und $L_1 \leq_R L_2$, ist auch L_2 nicht rekursiv.

Und wie zeigt man jetzt $L_1 \leq_R L_2$? Z.B. in dem man jede Instanz aus L_1 zu einer Instanz aus L_2 umbaut.

Definition (EE-Reduzierbar)

Für zwei Sprachen L_1, L_2 sagen wir dass $L_1 \leq_{EE} L_2$ (L_1 ist EE-reduzierbar auf L_2) falls eine TM M existiert, so dass

$$x \in L_1 \iff f_M(x) \in L_2$$
,

wobei f_M die von M berechnete Funktion ist.

Theorem

Wenn $L_1 \leq_{EE} L_2$, dann ist auch $L_1 \leq_R L_2$.

Theorem

Wenn $L_1 \leq_{EE} L_2$, dann ist auch $L_1 \leq_R L_2$.

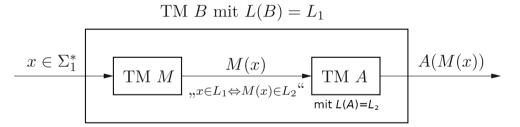


Abbildung 5.7

Rekursive Reduktionen sind aber mächtiger als EE-Reduktionen:

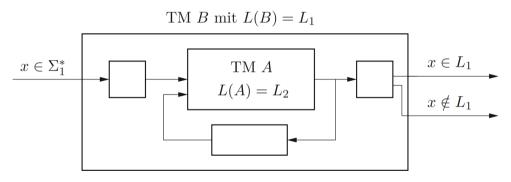


Abbildung 5.8

Aufgabe

Sei L_1 eine rekursive Sprache. Zeige dass dann

$$L_1 \leq_{\textit{EE}} \{0\}\{0,1\}^*$$

gilt.

Gilt auch $L_1 \leq_{EE} \{0, 1\}^*$?

Gilt auch $L_1 \leq_{EE} \emptyset$?

Gilt auch $L_1 \leq_{EE} L_{\text{diag}}$?

Rekursiv aufzählbare Sprachen

Zur Erinnerung (1. Übungsblatt):

Theorem

Eine unendliche Sprache L ist genau dann rekursiv, wenn ein Algorithmus existiert, der alle Wörter in L in kanonischer Reihenfolge auflistet.

Aufgabe

Beweise: Eine unendliche Sprache L ist genau dann rekursiv aufzählbar, wenn ein Algorithmus existiert, der alle Wörter in L auflistet (ohne sich an irgendeine Reihenfolge halten zu müssen).