

Theoretische Informatik – Übung Gruppe 3

Roman Langrehr

Übungsblatt 01 – Aufgabe 1a

Sei $n \in \mathbb{N}$. Wie viele Wörter der Länge n über dem Alphabet $\Sigma = \{a, b, c\}$ gibt es, die jeden der drei Buchstaben mindestens einmal enthalten?

Übungsblatt 02 –Aufgabe 2a

Beweise oder widerlege:

Es gibt eine nichtleere, endliche Sprache $L \neq \{\lambda\}$, die die Bedingung $L^2 = L$ erfüllt.

Übungsblatt 02 –Aufgabe 3

Zeigen Sie, dass eine unendliche Sprache L genau dann rekursiv ist, wenn ein Aufzählungsalgorithmus für L existiert.

Rekursive Sprachen

Definition

Eine Sprache L heißt rekursiv, wenn ein Algorithmus existiert der L erkennt.

Definition

Ein Algorithmus A erkennt die Sprache L (oder löst das Entscheidungsproblem (Σ, L)) falls für alle $w \in \Sigma^*$ gilt:

$$A(w) = \begin{cases} 1, & \text{falls } w \in L, \\ 0, & \text{falls } w \notin L. \end{cases}$$

Übungsblatt 02 –Aufgabe 3

Zeigen Sie, dass eine unendliche Sprache L genau dann rekursiv ist, wenn ein Aufzählungsalgorithmus für L existiert.

Rekursive Sprachen

Definition (Aufzählungsalgorithmus)

Sei Σ ein Alphabet, und sei $L \subset \Sigma^*$. A ist ein Aufzählungsalgorithmus für L, falls für jede Eingabe $n \in \mathbb{N}_+$ die Wortfolge x_1, \ldots, x_n ausgibt, wobei x_1, \ldots, x_n die kanonisch n ersten Wörter in L sind.

DINFK

Übungsblatt 02 –Aufgabe 3

Zeigen Sie, dass eine unendliche Sprache $\it L$ genau dann rekursiv ist, wenn ein Aufzählungsalgorithmus für $\it L$ existiert.

Kolmogorov-Komplexität

Definition (Kolmogorov-Komplexität)

Für jedes Wort $w \in \{0,1\}^*$ ist die Kolmogorov-Komplexität K(w) des Wortes w das Minimun der binären Längen der Pascal-Programme, die w generieren.

DINFK

Kolmogorov-Komplexität

Aufgabe

Sei $w_n:=10^{n^{10}}1$ für $n\in\mathbb{N}_0$.

- 1. Gebe eine möglichst gute obere Schranke für $K(w_n)$ in Abhängigkeit von n an.
- 2. Gebe eine möglichst gute obere Schranke für $K(w_n)$ in Abhängigkeit von $|w_n|$ an.

Aufgabe

Sei $L := \{(10)^i 101(01)^j \mid i, j \in \mathbb{N}_0\}$. Gebe eine möglichst gute obere Schranke für K(w) in Abhängigkeit von |w| für $w \in L$ an.

Kolmogorov-Komplexität

Aufgabe

Sei $L:=\{(10)^i101(01)^j\mid i,j\in\mathbb{N}_0\}$. Gebe eine möglichst gute obere Schranke für K(w) in Abhängigkeit von |w| für $w\in L$ an.

Aufgabe

Sei $L := \{0\} \left(\left\{ 1^n 0^{m^{99}} 1^{m^n} \mid m = n^{\lfloor \log_{42}(n) \rfloor} \right\} \cup \{0,1\}^* \right) \cup \{1\} \left(\{0,1\}^* - \left\{ 1^{29092020} \right\} \right).$ Gebe eine möglichst gute obere Schranke für K(w) in Abhängigkeit von |w| für $w \in L$ an.