ETH zürich

Towards Tight Adaptive Security of Non-Interactive Key Exchange

Julia HesseIBM Research Europe - ZurichDennis HofheinzETH ZurichLisa KohlCryptology Group, CWI AmsterdamRoman LangrehrETH Zurich

Outline

Non-Interactive Key Exchange (NIKE)

Previous results on tightness for NIKE

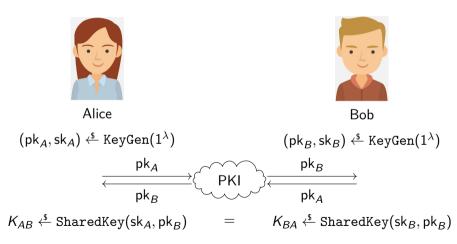
Our first result: Tight NIKE with large keys

Our second result: Large keys are necessary

Our third result: Tight semi-adaptively secure NIKE

ETH zürich

NIKE



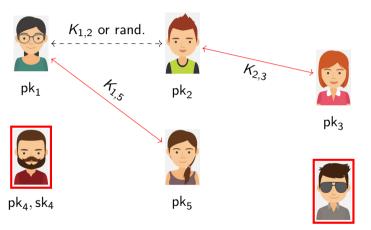
NIKE

- Symmetric keys with minimal communication
 - Fast
 - Low energy usage
- Building block for
 - Deniable authentication
 - Interactive key exchange
 - Designated verifier signatures

NIKE – Security

Adversary can adaptively

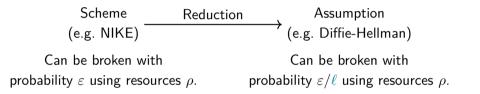
- spawn new users
- corrupt users
- reveal shared keys
- get challenged on (one¹) uncorrupted shared key
- Dishonest key registration: Can be achieved generically.



 pk_6, sk_6

¹Our work generalizes to multi-challenge security without additional loss Julia Hesse, Dennis Hofheinz, Lisa Kohl, Roman Langrehr 2021-11-01

Tight security



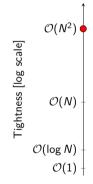
- $\bullet\,$ Large $\ell\,$ can be compensated by a larger security parameter.
 - $\Rightarrow \ {\sf Less} \ {\sf efficient}$
- Tight: ℓ does not depend on the adversary.
 - Especially, ℓ does not grow with the number of users N.

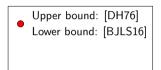
Related works [DH76]:

- Guess both challenge users (spawn query index)
- Embed challenge in their public key
- Security loss $\mathcal{O}(N^2)$

[BJLS16]:

- Loss $\mathcal{O}(N^2)$ is necessary
- if secret keys are unique (given the public key)

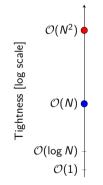


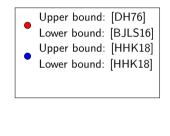


Related works

[HHK18]:

- Guess <u>one</u> of the challenge users (spawn query index)
- Embed challenge in their public key
- Security loss $\mathcal{O}(N)$
- Loss $\mathcal{O}(N)$ is necessary
- if secret keys are unique (given the public key)

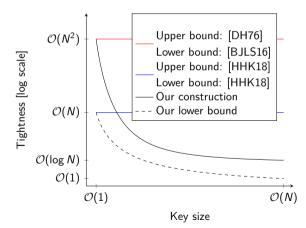




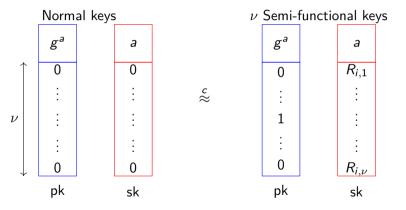
Comparison with related works

Our work:

- NIKE with flexible key length
- Larger keys give less security loss
- Lower bound: Large keys are necessary
- Lower bounds applies to NIKEs where the shared key is inner product of public and secret key.



Our NIKE: Abstract Idea



Shared key: Inner product of pk_1 and sk_2 .

Our NIKE: Abstract Idea

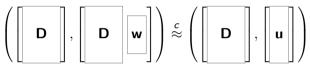
Shared key between users *i* and *j*:

	pk _j normal	pk _j semi-functional
pk _i normal	Real	Real
pk _i semi-functional	Real	$Real + R_{i,j}$
Uniformly random if sk _i and sk _j are unknown		

Implicit notation

$$\left[\begin{pmatrix}a_{11}&\cdots&a_{1,m}\\\vdots&\ddots&\vdots\\a_{n,1}&\cdots&a_{n,m}\end{pmatrix}\right]:=\begin{pmatrix}g^{a_{11}}&\cdots&g^{a_{1,m}}\\\vdots&\ddots&\vdots\\g^{a_{n,1}}&\cdots&g^{a_{n,m}}\end{pmatrix}$$

MDDH assumption



- $\mathbf{D}, \mathbf{w}, \mathbf{u}$ are uniformly random
 - Tightly implied by well-known assumptions like 2-LIN.
 - conjectured to hold even in presence of a symmetric paring

$$e(g^a,g^b)=g_T^{ab}$$

Our NIKE: Implementation



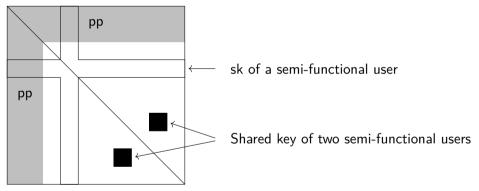
$$K_{i,j} = e(\mathsf{pk}_i, \mathsf{sk}_j) = e(\mathsf{pk}_j, \mathsf{sk}_i)$$

Semi-functional keys:

$$\mathsf{pk}_i = \begin{bmatrix} \mathbf{u}_i \end{bmatrix} \quad \mathsf{sk}_i = \begin{bmatrix} \mathbf{M} & \mathbf{u}_i \end{bmatrix}$$

Our NIKE: Proof sketch

Leakage of the matrix **M**: (In a suitable basis)



 \Rightarrow Shared keys between users with semi-functional keys are uniformly random (even with adaptive corruptions).

Our NIKE: Proof sketch

- N: Number of users
- ν : Number of "Table entries" \approx Size of the keys

Hybrid argument:

- each hybrid randomizes ν^2 shared keys
- $\Rightarrow \ \mathcal{O}((\textit{N}/
 u)^2)$ are necessary
 - in each hybrid:
 - Switch ν keys from normal to semi-functional (and back)
 - can be done with loss $\mathcal{O}(\log \nu)$ (new MDDH rerandomization argument)

Total security loss: $\mathcal{O}(N^2 \log(\nu)/\nu^2)$

Inner-product NIKEs

Definition:

- pk contains (implicitly) a *d*-dimensional vector **x**
- sk contains (implicitly) a *d*-dimensional vector **y**
- Shared key: $f(\langle \mathbf{x}_i, \mathbf{y}_i \rangle)$ for an invertible function f.

Captures for example:

- Diffie-Hellman
- [HHK18]
- Our first construction

Lower bound for inner-product NIKE

- Reduction sends pk at registration
- = \mathbf{x}_i fixed for each user at registration
 - Case $\mathbf{x}_i \in \text{Span}(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$: Reduction is committed to shared keys.
 - Case $\mathbf{x}_i \notin \text{Span}(\mathbf{x}_1, \dots, \mathbf{x}_{i-1})$: Can happen at most d times.
 - After registering all users, opening ≈ N/2 secret keys, the reduction is committed to a shared key (among the remaining users) with significant probability.
 - Meta-reduction now unveils shared key between two remaining users...
 - ...rewinds the reduction....
 - ... (hopefully) wins the challenge with this key.

Minimal Security loss: $\Omega(N/d)$

Semi-adaptive security

Selective security

- Adversary has to register all users in one shot
- Adversary has to specify challenge pair <u>before</u> seeing the public key
- Tightness is easy

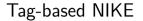
Semi-adaptive security

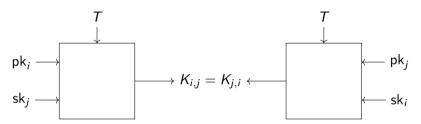
 Adversary has to specify challenge pair <u>before</u> making any corruptions (reveal secret key/reveal shared key) Adaptive security

• Tightness is hard

Programmable tags

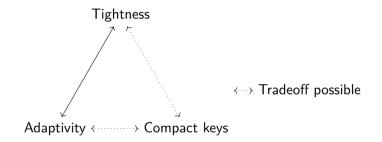
- Use our first construction (with $\nu = 1$)
- Switch all keys to semi-functional
- Reduction can output all secret keys...
- ...but then there is nothing secret about the shared keys between two semi-functional users
- Still useful:
 - Reduction publishes all the public keys
 - Adversary picks challenge pair
 - Reduction "program" the challenge key
 - \Rightarrow Tool to gain adaptivity





- Correctness holds except for one special tag \mathcal{T}^{\star}
- Security holds for \mathcal{T}^{\star}
- Can be built from LWE (with a tight security reduction)
- Use as tag the "shared key" from the first construction
- \Rightarrow Tight semi-adaptively secure NIKE
 - More general security notion when larger keys are used

Summary



- You can have two of these properties
- Tradeoff between "Compact keys" and "Tightness" is possible
- Tradeoff between "Compact keys" and "Adaptivity" is possible

References I

- Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge.
 On the impossibility of tight cryptographic reductions.
 In Marc Fischlin and Jean-Sébastien Coron, editors, <u>EUROCRYPT 2016, Part II</u>, volume 9666 of <u>LNCS</u>, pages 273–304. Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49896-5_10.
- Whitfield Diffie and Martin E. Hellman.
 New directions in cryptography.
 IEEE Transactions on Information Theory, 22(6):644–654, 1976.

References II

🔋 Julia Hesse, Dennis Hofheinz, and Lisa Kohl.

On tightly secure non-interactive key exchange. In Hovav Shacham and Alexandra Boldyreva, editors, <u>CRYPTO 2018, Part II</u>, volume 10992 of <u>LNCS</u>, pages 65–94. Springer, Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_3.

Pictures

Alice, Bob, and others: freepik.com