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Outline

Non-Interactive Key Exchange (NIKE)

Previous results on tightness for NIKE

Our first result: Tight NIKE with large keys

Our second result: Large keys are necessary

Our third result: Tight semi-adaptively secure NIKE
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NIKE

Alice Bob
(pkA, skA) $← KeyGen(1λ) (pkB, skB) $← KeyGen(1λ)

PKI
pkA

pkB

pkB

pkA

KAB
$← SharedKey(skA, pkB) KBA

$← SharedKey(skB, pkB)=
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NIKE

• Symmetric keys with minimal communication
– Fast
– Low energy usage

• Building block for
– Deniable authentication
– Interactive key exchange
– Designated verifier signatures
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NIKE – Security
Adversary can adaptively
• spawn new users
• corrupt users
• reveal shared keys
• get challenged on

(one1) uncorrupted
shared key
• Dishonest key

registration: Can be
achieved generically.

pk4, sk4 pk5

pk6, sk6

pk1 pk2

pk3

K
1,5

K2,3

K1,2 or rand.

1Our work generalizes to multi-challenge security without additional loss
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Tight security

Scheme
(e.g. NIKE)

Assumption
(e.g. Diffie-Hellman)

Reduction

Can be broken with
probability ε using resources ρ.

Can be broken with
probability ε/ℓ using resources ρ.

• Large ℓ can be compensated by a larger security parameter.
⇒ Less efficient

• Tight: ℓ does not depend on the adversary.
– Especially, ℓ does not grow with the number of users N.
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Related works
[DH76]:
• Guess both challenge

users (spawn query index)
• Embed challenge in their

public key
• Security loss O(N2)

[BJLS16]:
• Loss O(N2) is necessary
• if secret keys are unique

(given the public key)

O(1)
O(log N)
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Upper bound: [DH76]
Lower bound: [BJLS16]
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Related works
[HHK18]:
• Guess one of the

challenge users (spawn
query index)
• Embed challenge in their

public key
• Security loss O(N)
• Loss O(N) is necessary
• if secret keys are unique

(given the public key)

O(1)
O(log N)

O(N)

O(N2)
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Upper bound: [DH76]
Lower bound: [BJLS16]
Upper bound: [HHK18]
Lower bound: [HHK18]
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Comparison with related works
Our work:
• NIKE with flexible key

length
• Larger keys give less

security loss
• Lower bound: Large keys

are necessary
• Lower bounds applies to

NIKEs where the shared
key is inner product of
public and secret key.

O(1) O(N)
O(1)

O(log N)

O(N)

O(N2)

Key size
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Upper bound: [DH76]
Lower bound: [BJLS16]
Upper bound: [HHK18]
Lower bound: [HHK18]
Our construction
Our lower bound
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Our NIKE: Abstract Idea

Normal keys

ν

ga

0
...
...
...
0

a

0
...
...
...
0

pk sk

c≈

ν Semi-functional keys

ga

0
...
1
...
0

a

Ri ,1
...
...
...

Ri ,ν

pk sk

Ri ,j = Rj,i
unif. random

Shared key: Inner product of pk1 and sk2.
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Our NIKE: Abstract Idea

Shared key between users i and j :

pkj normal pkj semi-functional
pki normal Real Real

pki semi-functional Real Real + Ri ,j

Uniformly random if ski and skj are unknown
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Implicit notation




a11 · · · a1,m
... . . . ...

an,1 · · · an,m


 :=


ga11 · · · ga1,m

... . . . ...
gan,1 · · · gan,m
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MDDH assumption


 D

,

 D w


 c≈


 D

,

 u




D, w, u are uniformly random
• Tightly implied by well-known assumptions like 2-LIN.
• conjectured to hold even in presence of a symmetric paring

e(ga, gb) = gab
T
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Our NIKE: Implementation

pp =


 D

,

 M D


with M = M⊤

pki =

 D wi

 ski =

 M D wi


Ki ,j = e(pki , skj) = e(pkj , ski)

Semi-functional keys:

pki =

 ui

 ski =

 M ui
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Our NIKE: Proof sketch
Leakage of the matrix M: (In a suitable basis)

pp

pp
sk of a semi-functional user

Shared key of two semi-functional users

⇒ Shared keys between users with semi-functional keys are uniformly random (even with
adaptive corruptions).
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Our NIKE: Proof sketch

• N: Number of users
• ν: Number of “Table entries” ≈ Size of the keys

Hybrid argument:
• each hybrid randomizes ν2 shared keys
⇒ O((N/ν)2) are necessary
• in each hybrid:

– Switch ν keys from normal to semi-functional (and back)
– can be done with loss O(log ν) (new MDDH rerandomization argument)

Total security loss: O(N2 log(ν)/ν2)
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Inner-product NIKEs

Definition:
• pk contains (implicitly) a d-dimensional vector x
• sk contains (implicitly) a d-dimensional vector y
• Shared key: f (⟨xi , yi⟩) for an invertible function f .

Captures for example:
• Diffie-Hellman
• [HHK18]
• Our first construction
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Lower bound for inner-product NIKE
• Reduction sends pk at registration

=> xi fixed for each user at registration
• Case xi ∈ Span(x1, . . . , xi−1): Reduction is committed to shared keys.
• Case xi /∈ Span(x1, . . . , xi−1): Can happen at most d times.
• After registering all users, opening ≈ N/2 secret keys, the reduction is committed

to a shared key (among the remaining users) with significant probability.
• Meta-reduction now unveils shared key between two remaining users...
• ...rewinds the reduction...
• ... (hopefully) wins the challenge with this key.

Minimal Security loss: Ω(N/d)
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Semi-adaptive security

Selective security

• Adversary has to
register all users in
one shot
• Adversary has to

specify challenge pair
before seeing the
public key
• Tightness is easy

Semi-adaptive security

• Adversary has to
specify challenge pair
before making any
corruptions (reveal
secret key/reveal
shared key)

Adaptive security

• Tightness is hard
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Programmable tags

• Use our first construction (with ν = 1)
• Switch all keys to semi-functional
• Reduction can output all secret keys...
• ...but then there is nothing secret about the shared keys between two

semi-functional users
• Still useful:

– Reduction publishes all the public keys
– Adversary picks challenge pair
– Reduction “program” the challenge key
⇒ Tool to gain adaptivity
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Tag-based NIKE

pki

skj

pkj

ski

T T

Ki ,j = Kj,i

• Correctness holds except for one special tag T ⋆

• Security holds for T ⋆

• Can be built from LWE (with a tight security reduction)
• Use as tag the “shared key” from the first construction
⇒ Tight semi-adaptively secure NIKE
• More general security notion when larger keys are used
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Summary

Adaptivity Compact keys

Tightness

Tradeoff possible

• You can have two of these properties
• Tradeoff between “Compact keys” and “Tightness” is possible
• Tradeoff between “Compact keys” and “Adaptivity” is possible
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Pictures

Alice, Bob, and others: freepik.com
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https://de.freepik.com/vektoren-kostenlos/bunte-sammlung-mit-einer-vielzahl-von-avataren_1258263.htm
https://www.freepik.com/
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